# organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

# 4,4-Dimethyl-2-tosyl-2,3,3a,4-tetrahydro-1H,10H-pyrrolo[3,4-c]pyrano-[6,5-b]indan-10-one

### K. Chinnakali,<sup>a</sup>\* D. Sudha,<sup>a</sup><sup>‡</sup> M. Jayagopi,<sup>b</sup> R. Raghunathan<sup>b</sup> and Hoong-Kun Fun<sup>c</sup>\*

<sup>a</sup>Department of Physics, Anna University, Chennai 600 025, India, <sup>b</sup>Department of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India, and <sup>c</sup>X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia

Correspondence e-mail: kali@annauniv.edu, hkfun@usm.my

Received 19 October 2007; accepted 21 October 2007

Key indicators: single-crystal X-ray study; T = 100 K; mean  $\sigma$ (C–C) = 0.001 Å; R factor = 0.034; wR factor = 0.105; data-to-parameter ratio = 32.8.

The molecule of the title compound, C<sub>23</sub>H<sub>23</sub>NO<sub>4</sub>S, adopts a folded conformation, with the cyclopentadienone ring and tosyl groups arranged in an almost face-to-face fashion. The pyrrolidine ring has an envelope conformation and the dihydropyran ring is in a half-chair conformation. The pyrrolidine and dihydropyran rings are cis-fused. The indenone ring system is essentially planar, and the indene plane forms a dihedral angle of 25.12 (3)° with the sulfonylbound benzene ring. In the crystal structure, molecules translated by one unit cell along the a-axis direction are linked into a chain by  $C-H \cdots O$  hydrogen bonds. The inversion-related molecules of adjacent chains are linked along the c axis by  $C-H \cdots O$  hydrogen bonds into a sheet-like structure parallel to the *ac* plane.

#### **Related literature**

For bond-length data, see: Allen et al. (1987). For related pyrrolo[3,4-*c*]pyran structures, see: Chinnakali *et al.* (2007*a*,*b*). For ring-puckering parameters, see: Cremer & Pople (1975). For asymmetry parameters, see: Duax et al. (1976). For notation of hydrogen-bonding motifs, see: Bernstein et al. (1995).



<sup>‡</sup> Currently working at the Department of Physics, R. M. K. Engineering College, R. S. M. Nagar, Kavaraipettai 601 206, Tamil Nadu, India.

#### **Experimental**

#### Crystal data

| $C_{23}H_{23}NO_4S$              | $\gamma = 93.192 \ (1)^{\circ}$           |
|----------------------------------|-------------------------------------------|
| $M_r = 409.48$                   | V = 987.84 (4) Å <sup>3</sup>             |
| Triclinic, P1                    | Z = 2                                     |
| a = 8.0219 (2) Å                 | Mo $K\alpha$ radiation                    |
| b = 8.6106 (2) Å                 | $\mu = 0.19 \text{ mm}^{-1}$              |
| c = 15.0432 (4) Å                | T = 100.0 (1) K                           |
| $\alpha = 104.557 \ (1)^{\circ}$ | $0.60 \times 0.56 \times 0.37 \text{ mm}$ |
| $\beta = 99.182 \ (1)^{\circ}$   |                                           |

#### Data collection

Bruker SMART APEXII CCD area-detector diffractometer Absorption correction: multi-scan (SADABS: Bruker, 2005)  $T_{\min} = 0.862, T_{\max} = 0.932$ 

#### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.035$ |  |
|---------------------------------|--|
| $wR(F^2) = 0.106$               |  |
| S = 1.07                        |  |
| 8635 reflections                |  |

#### Table 1

Hydrogen-bond geometry (Å, °).

| $D - H \cdots A$                                                                          | $D-\mathrm{H}$ | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|-------------------------------------------------------------------------------------------|----------------|-------------------------|--------------|--------------------------------------|
| $C3-H3\cdots O1^{i} C16-H16A\cdots O3^{ii} C16-H16C\cdots O1^{i} C21-H21\cdots O4^{iii} $ | 0.98           | 2.45                    | 3.2451 (10)  | 138                                  |
|                                                                                           | 0.96           | 2.55                    | 3.5075 (11)  | 175                                  |
|                                                                                           | 0.96           | 2.49                    | 3.4151 (11)  | 161                                  |
|                                                                                           | 0.93           | 2.56                    | 3.2266 (9)   | 129                                  |

42977 measured reflections

 $R_{\rm int} = 0.024$ 

263 parameters

 $\Delta \rho_{\rm max} = 0.57 \text{ e } \text{\AA}^-$ 

 $\Delta \rho_{\rm min} = -0.36 \text{ e } \text{\AA}^{-3}$ 

8635 independent reflections

7903 reflections with  $I > 2\sigma(I)$ 

H-atom parameters constrained

Symmetry codes: (i) x + 1, y, z; (ii) -x + 2, -y + 2, -z; (iii) -x + 2, -y + 2, -z + 1.

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 1998); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

HKF thanks Universiti Sains Malaysia for Fundamental Research Grant Scheme (FRGS) grant No. 203/PFIZIK/ 671064.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WN2211).

#### References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Bruker (2005). APEX2 (Version 1.27), SAINT (Version 7.12a) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.
- Chinnakali, K., Jayagopi, M., Sudha, D., Raghunathan, R. & Fun, H.-K. (2007a). Acta Cryst. E63, 04363.
- Chinnakali, K., Jayagopi, M., Sudha, D., Raghunathan, R. & Fun, H.-K. (2007b). Acta Cryst. E63, 04364.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Duax, W. L., Weeks, C. M. & Rohrer, D. C. (1976). Topics in Stereochemistry, Vol. 9, edited by E. L. Eliel & N. L. Allinger, pp. 271-383. New York: John Wiley.
- Sheldrick, G. M. (1998). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

Acta Cryst. (2007). E63, 04438 [doi:10.1107/S1600536807052233]

## 4,4-Dimethyl-2-tosyl-2,3,3a,4-tetrahydro-1H,10H-pyrrolo[3,4-c]pyrano[6,5-b]indan-10-one

## K. Chinnakali, D. Sudha, M. Jayagopi, R. Raghunathan and H.-K. Fun

#### Comment

As part of our ongoing studies on pyrrolo[3,4-*c*]pyran derivatives (Chinnakali *et al.*, 2007*a*,b), we report here the crystal structure of the title compound (Fig. 1).

Bond lengths and angles show normal values (Allen *et al.*, 1987), and are comparable with those in related structures (Chinnakali *et al.*, 2007*a*,b). As a result of the repulsive interaction between the short S=O bonds, atom S1 has a distorted tetrahedral configuration, with the O2—S1—O1 [120.17 (4)°] angle deviating significantly from the ideal tetrahedral value.

The pyrrolidine ring (N1/C1–C4) has an envelope conformation with atom C2 deviating by 0.586 (1) Å from the leastsquares plane formed by the remaining four ring atoms. The puckering parameters ( $q_2$ ,  $\varphi_2$ ; Cremer & Pople, 1975) and the smallest displacement asymmetry parameters (Duax *et al.*, 1976) for the pyrrolidine ring are  $q_2 = 0.3821$  (8) Å,  $\varphi_2 = 260.23$  (11)° and  $\Delta C_s[C2] = 6.18$  (7)°. The tosyl group is equatorially attached to the pyrrolidine ring. The dihydropyran ring adopts a half-chair conformation with a local twofold rotation axis passing through the C2—C5 and C6—C7 bonds; the puckering (Q,  $\theta$ ,  $\varphi$ ) and asymmetry ( $\Delta C_2[C2-C5]$ ) parameters are 0.4439 (8) Å, 129.98 (10)°, 276.03 (12)° and 3.45 (9)°, respectively. The pyrrolidine and dihydropyran rings are *cis*-fused.

The indenone ring system is essentially planar, with atom O4 deviating from the indene plane by 0.088 (1) Å. The dihedral angle between the indene ring system and the C8–C13 benzene ring is 25.12 (3)°. The molecule adopts a folded conformation, with the cyclopentadienone and C8–C13 benzene rings arranged in an almost face-to-face fashion. However, no significant  $\pi$ – $\pi$  interactions are observed between these rings as their centroids are separated by 3.9135 (5) Å.

In the crystal structure, molecules translated by one unit cell along the *a*-axis direction are linked by C3—H3···O1<sup>1</sup> and C16—H16C···O1<sup>i</sup> [symmetry code: (i) 1 + x, y, z] hydrogen-bonding interactions to form a chain. These interactions together constitute a pair of bifurcated acceptor bonds, generating an  $R^{1}_{2}(7)$  motif (Bernstein *et al.*, 1995). The inversion-related molecules of adjacent chains are alternately linked along the *c* axis by pairs of C16—H16A···O3<sup>ii</sup> and C21—H21···O4<sup>iii</sup> [symmetry codes: (ii) 2 - x, 2 - y, -z; (iii) 2 - x, 2 - y, 1 - z] hydrogen bonds (Table 1) into a sheet-like structure parallel to the *ac* plane (Fig. 2). The pairs of C16—H16A···O3<sup>ii</sup> and C21—H21···O4<sup>iii</sup> interactions generate rings of graph-set motif  $R^{2}_{2}(10)$  and  $R^{2}_{2}(8)$ , respectively.

#### Experimental

To a solution of 2*H*-indene-1,3-dione (1 mmol) in dry toluene (20 ml), 2-[*N*-(3-methylbut-2-enyl)-*N*-tosylamino]acetaldehyde (1 mmol) and a catalytic amount of the base ethylenediamine-*N*,*N*-diacetate (EDDA) were added and the reaction mixture was refluxed for 12 h. After completion of the reaction, the solvent was evaporated under reduced pressure and the crude product was chromatographed using a hexane–ethyl acetate (8:2  $\nu/\nu$ ) mixture to obtain the title compound. The compound was recrystallized from ethyl acetate solution by slow evaporation.

### Refinement

H atoms were positioned geometrically (C—H = 0.93–0.98 Å) and allowed to ride on their parent atoms, with  $U_{iso}(H) = 1.5U_{eq}(C_{methyl})$  or  $1.2U_{eq}(C)$ . A rotating group model was used for the methyl group attached to the aromatic ring.

## **Figures**



Fig. 1. The molecular structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 80% probability level.



Fig. 2. View of a hydrogen-bonded (dashed lines) sheet of the title compound. For the sake of clarity, H atoms not involved in the interactions have been omitted. Symmetry codes: (i) 1 + x, y, z; (iii) 2 - x, 2 - y, 1 - z; (iv) x, y, 1 + z.

## 4,4-Dimethyl-2-tosyl-2,3,3a,4-tetrahydro-1H,10H- pyrrolo[3,4-c]pyrano[6,5-b]indan-10-one

| Crystal data                                      |                                               |
|---------------------------------------------------|-----------------------------------------------|
| C <sub>23</sub> H <sub>23</sub> NO <sub>4</sub> S | Z = 2                                         |
| $M_r = 409.48$                                    | $F_{000} = 432$                               |
| Triclinic, <i>P</i> T                             | $D_{\rm x} = 1.377 \ {\rm Mg} \ {\rm m}^{-3}$ |
| Hall symbol: -P 1                                 | Mo $K\alpha$ radiation $\lambda = 0.71073$ Å  |
| a = 8.0219 (2) Å                                  | Cell parameters from 8302 reflections         |
| b = 8.6106 (2) Å                                  | $\theta = 2.5 - 40.2^{\circ}$                 |
| c = 15.0432 (4)  Å                                | $\mu = 0.19 \text{ mm}^{-1}$                  |
| $\alpha = 104.557 (1)^{\circ}$                    | T = 100.0 (1)  K                              |
| $\beta = 99.182 (1)^{\circ}$                      | Block, light yellow                           |
| $\gamma = 93.192 \ (1)^{\circ}$                   | $0.60 \times 0.56 \times 0.37 \text{ mm}$     |
| $V = 987.84 (4) \text{ Å}^3$                      |                                               |

## Data collection

Bruker SMART APEXII CCD area-detector diffractometer

8635 independent reflections

| Radiation source: fine-focus sealed tube                    | 7903 reflections with $I > 2\sigma(I)$ |
|-------------------------------------------------------------|----------------------------------------|
| Monochromator: graphite                                     | $R_{\rm int} = 0.024$                  |
| Detector resolution: 8.33 pixels mm <sup>-1</sup>           | $\theta_{\rm max} = 35.0^{\circ}$      |
| T = 100.0(1)  K                                             | $\theta_{\min} = 1.4^{\circ}$          |
| ω scans                                                     | $h = -12 \rightarrow 12$               |
| Absorption correction: multi-scan<br>(SADABS; Bruker, 2005) | $k = -13 \rightarrow 13$               |
| $T_{\min} = 0.862, \ T_{\max} = 0.932$                      | $l = -24 \rightarrow 24$               |
| 42977 measured reflections                                  |                                        |

| Rei | fine | me | nt |
|-----|------|----|----|
| nej | ine  | me | nı |

| Refinement on $F^2$                                    | Secondary atom site location: difference Fourier map                                |
|--------------------------------------------------------|-------------------------------------------------------------------------------------|
| Least-squares matrix: full                             | Hydrogen site location: inferred from neighbouring sites                            |
| $R[F^2 > 2\sigma(F^2)] = 0.035$                        | H-atom parameters constrained                                                       |
| $wR(F^2) = 0.106$                                      | $w = 1/[\sigma^2(F_o^2) + (0.0596P)^2 + 0.2351P]$<br>where $P = (F_o^2 + 2F_c^2)/3$ |
| S = 1.07                                               | $(\Delta/\sigma)_{\rm max} = 0.001$                                                 |
| 8635 reflections                                       | $\Delta \rho_{max} = 0.58 \text{ e } \text{\AA}^{-3}$                               |
| 263 parameters                                         | $\Delta \rho_{min} = -0.36 \text{ e } \text{\AA}^{-3}$                              |
| Primary atom site location: structure-invariant direct | Extinction correction: none                                                         |

methods returned a structure invariant direct Extinction correction: none

#### Special details

Experimental. The low-temparture data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on  $F^2$ , conventional *R*-factors *R* are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2 \operatorname{sigma}(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

|            |        |                 |        |         |         | -            |         |         |               |                | ?   | Ε.  |
|------------|--------|-----------------|--------|---------|---------|--------------|---------|---------|---------------|----------------|-----|-----|
| Engotional | atomio | a a andin at an | andia  | atuania | 0.14 0. | antinglant   | inatura | nia dia | mla come onet | n an an of our | 114 | - ) |
| ггасионаі  | aiomic | coorainaies     | ana is | oirodic | or ea   | iuivaieni    | isoiroi | nc ais  | nacement      | Darameiers     | (A  | 1   |
|            |        | 000.00000000    |        | 01.0010 |         | 100000000000 | 1001.01 |         | p             | p              |     | /   |

|    | x           | У           | Z             | $U_{\rm iso}$ */ $U_{\rm eq}$ |
|----|-------------|-------------|---------------|-------------------------------|
| S1 | 0.39580 (2) | 0.63360 (2) | 0.220153 (13) | 0.01541 (5)                   |
| 01 | 0.23678 (8) | 0.62916 (8) | 0.15941 (5)   | 0.02275 (12)                  |
| O2 | 0.41576 (9) | 0.52386 (7) | 0.27782 (5)   | 0.02174 (12)                  |
| O3 | 0.83313 (8) | 0.95635 (6) | 0.09401 (4)   | 0.01588 (10)                  |
| O4 | 0.99483 (9) | 0.77446 (7) | 0.36449 (4)   | 0.02030 (11)                  |
| N1 | 0.53669 (8) | 0.59825 (7) | 0.15218 (4)   | 0.01406 (10)                  |
| C1 | 0.55116 (9) | 0.69996 (9) | 0.08746 (5)   | 0.01553 (12)                  |

| H1A  | 0.5482       | 0.8129       | 0.1182       | 0.019*       |
|------|--------------|--------------|--------------|--------------|
| H1B  | 0.4608       | 0.6678       | 0.0334       | 0.019*       |
| C2   | 0.72446 (9)  | 0.66848 (8)  | 0.05984 (5)  | 0.01418 (11) |
| H2   | 0.7114       | 0.5658       | 0.0118       | 0.017*       |
| C3   | 0.83158 (9)  | 0.64700 (8)  | 0.15018 (5)  | 0.01296 (11) |
| Н3   | 0.9272       | 0.5848       | 0.1361       | 0.016*       |
| C4   | 0.70506 (9)  | 0.55341 (8)  | 0.18884 (5)  | 0.01496 (11) |
| H4A  | 0.7108       | 0.4381       | 0.1671       | 0.018*       |
| H4B  | 0.7277       | 0.5847       | 0.2566       | 0.018*       |
| C5   | 0.80278 (10) | 0.79956 (8)  | 0.02205 (5)  | 0.01600 (12) |
| C6   | 0.88902 (9)  | 0.94690 (8)  | 0.18073 (5)  | 0.01282 (11) |
| C7   | 0.89279 (9)  | 0.81174 (8)  | 0.21169 (5)  | 0.01246 (11) |
| C8   | 0.44908 (9)  | 0.83213 (9)  | 0.29019 (5)  | 0.01570 (12) |
| C9   | 0.56938 (10) | 0.86295 (10) | 0.37214 (5)  | 0.01873 (13) |
| Н9   | 0.6141       | 0.7784       | 0.3930       | 0.022*       |
| C10  | 0.62124 (11) | 1.02188 (10) | 0.42204 (6)  | 0.02109 (14) |
| H10  | 0.7008       | 1.0433       | 0.4769       | 0.025*       |
| C11  | 0.55587 (11) | 1.15034 (10) | 0.39124 (6)  | 0.02036 (14) |
| C12  | 0.43419 (11) | 1.11695 (10) | 0.30990 (6)  | 0.02146 (14) |
| H12  | 0.3886       | 1.2014       | 0.2893       | 0.026*       |
| C13  | 0.38025 (10) | 0.95850 (10) | 0.25916 (6)  | 0.01916 (13) |
| H13  | 0.2989       | 0.9370       | 0.2050       | 0.023*       |
| C14  | 0.61644 (14) | 1.32121 (11) | 0.44569 (8)  | 0.0315 (2)   |
| H14A | 0.5504       | 1.3937       | 0.4193       | 0.047*       |
| H14B | 0.7338       | 1.3436       | 0.4430       | 0.047*       |
| H14C | 0.6038       | 1.3354       | 0.5095       | 0.047*       |
| C15  | 0.68402 (13) | 0.83273 (10) | -0.05901 (6) | 0.02343 (16) |
| H15A | 0.7383       | 0.9153       | -0.0803      | 0.035*       |
| H15B | 0.5815       | 0.8679       | -0.0388      | 0.035*       |
| H15C | 0.6573       | 0.7359       | -0.1091      | 0.035*       |
| C16  | 0.97315 (11) | 0.75615 (10) | -0.00403 (6) | 0.02156 (15) |
| H16A | 1.0209       | 0.8391       | -0.0276      | 0.032*       |
| H16B | 0.9573       | 0.6554       | -0.0512      | 0.032*       |
| H16C | 1.0488       | 0.7466       | 0.0502       | 0.032*       |
| C17  | 0.95601 (9)  | 1.09335 (8)  | 0.25648 (5)  | 0.01349 (11) |
| C18  | 0.97941 (10) | 1.25424 (9)  | 0.25762 (5)  | 0.01705 (12) |
| H18  | 0.9517       | 1.2876       | 0.2034       | 0.020*       |
| C19  | 1.04670 (11) | 1.36602 (9)  | 0.34373 (6)  | 0.02031 (14) |
| H19  | 1.0648       | 1.4749       | 0.3465       | 0.024*       |
| C20  | 1.08615 (11) | 1.31523 (10) | 0.42432 (6)  | 0.02093 (14) |
| H20  | 1.1278       | 1.3910       | 0.4808       | 0.025*       |
| C21  | 1.06429 (10) | 1.15118 (9)  | 0.42228 (5)  | 0.01811 (13) |
| H21  | 1.0919       | 1.1172       | 0.4763       | 0.022*       |
| C22  | 1.00078 (9)  | 1.04233 (8)  | 0.33774 (5)  | 0.01415 (11) |
| C23  | 0.96614 (9)  | 0.86138 (8)  | 0.31201 (5)  | 0.01398 (11) |
|      |              |              |              |              |

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$      | $U^{13}$     | $U^{23}$     |
|-----|-------------|-------------|-------------|---------------|--------------|--------------|
| S1  | 0.01277 (8) | 0.01370 (8) | 0.01945 (8) | -0.00091 (5)  | 0.00437 (6)  | 0.00339 (6)  |
| 01  | 0.0122 (2)  | 0.0237 (3)  | 0.0283 (3)  | -0.0010 (2)   | 0.0010 (2)   | 0.0016 (2)   |
| 02  | 0.0258 (3)  | 0.0168 (2)  | 0.0261 (3)  | 0.0000 (2)    | 0.0109 (2)   | 0.0087 (2)   |
| 03  | 0.0234 (3)  | 0.0116 (2)  | 0.0113 (2)  | -0.00181 (18) | 0.00137 (17) | 0.00251 (16) |
| 04  | 0.0277 (3)  | 0.0166 (2)  | 0.0169 (2)  | 0.0031 (2)    | 0.0006 (2)   | 0.00693 (19) |
| N1  | 0.0124 (2)  | 0.0139 (2)  | 0.0163 (2)  | 0.00059 (18)  | 0.00296 (18) | 0.00469 (19) |
| C1  | 0.0147 (3)  | 0.0155 (3)  | 0.0161 (3)  | -0.0007 (2)   | 0.0002 (2)   | 0.0056 (2)   |
| C2  | 0.0165 (3)  | 0.0118 (3)  | 0.0131 (3)  | -0.0018 (2)   | 0.0026 (2)   | 0.0020 (2)   |
| C3  | 0.0131 (3)  | 0.0104 (2)  | 0.0150 (3)  | 0.00002 (19)  | 0.0033 (2)   | 0.00229 (19) |
| C4  | 0.0133 (3)  | 0.0129 (3)  | 0.0198 (3)  | 0.0007 (2)    | 0.0031 (2)   | 0.0065 (2)   |
| C5  | 0.0226 (3)  | 0.0125 (3)  | 0.0115 (3)  | -0.0027 (2)   | 0.0032 (2)   | 0.0013 (2)   |
| C6  | 0.0145 (3)  | 0.0111 (2)  | 0.0121 (2)  | -0.0003 (2)   | 0.0023 (2)   | 0.00204 (19) |
| C7  | 0.0133 (3)  | 0.0106 (2)  | 0.0129 (3)  | 0.00010 (19)  | 0.0021 (2)   | 0.00233 (19) |
| C8  | 0.0144 (3)  | 0.0150 (3)  | 0.0176 (3)  | 0.0017 (2)    | 0.0040 (2)   | 0.0034 (2)   |
| C9  | 0.0201 (3)  | 0.0172 (3)  | 0.0182 (3)  | 0.0039 (2)    | 0.0030 (2)   | 0.0033 (2)   |
| C10 | 0.0208 (3)  | 0.0194 (3)  | 0.0199 (3)  | 0.0032 (3)    | 0.0021 (3)   | 0.0000(2)    |
| C11 | 0.0198 (3)  | 0.0160 (3)  | 0.0237 (3)  | 0.0021 (2)    | 0.0071 (3)   | 0.0001 (2)   |
| C12 | 0.0225 (3)  | 0.0159 (3)  | 0.0265 (4)  | 0.0051 (3)    | 0.0059 (3)   | 0.0050 (3)   |
| C13 | 0.0177 (3)  | 0.0171 (3)  | 0.0221 (3)  | 0.0040 (2)    | 0.0023 (2)   | 0.0045 (2)   |
| C14 | 0.0332 (5)  | 0.0175 (4)  | 0.0372 (5)  | 0.0005 (3)    | 0.0063 (4)   | -0.0044 (3)  |
| C15 | 0.0344 (4)  | 0.0192 (3)  | 0.0143 (3)  | -0.0040 (3)   | -0.0016 (3)  | 0.0051 (2)   |
| C16 | 0.0268 (4)  | 0.0185 (3)  | 0.0202 (3)  | -0.0023 (3)   | 0.0116 (3)   | 0.0030(2)    |
| C17 | 0.0154 (3)  | 0.0106 (2)  | 0.0135 (3)  | 0.0005 (2)    | 0.0023 (2)   | 0.00183 (19) |
| C18 | 0.0216 (3)  | 0.0115 (3)  | 0.0172 (3)  | 0.0007 (2)    | 0.0032 (2)   | 0.0028 (2)   |
| C19 | 0.0257 (4)  | 0.0115 (3)  | 0.0210 (3)  | -0.0008 (2)   | 0.0032 (3)   | 0.0006 (2)   |
| C20 | 0.0256 (4)  | 0.0147 (3)  | 0.0178 (3)  | -0.0013 (3)   | 0.0010 (3)   | -0.0018 (2)  |
| C21 | 0.0212 (3)  | 0.0162 (3)  | 0.0139 (3)  | -0.0002 (2)   | 0.0001 (2)   | 0.0008 (2)   |
| C22 | 0.0155 (3)  | 0.0123 (3)  | 0.0134 (3)  | 0.0005 (2)    | 0.0015 (2)   | 0.0019 (2)   |
| C23 | 0.0148 (3)  | 0.0126 (3)  | 0.0139 (3)  | 0.0011 (2)    | 0.0019 (2)   | 0.0029(2)    |

# Atomic displacement parameters $(Å^2)$

# Geometric parameters (Å, °)

| S1—O2  | 1.4337 (6)  | С9—Н9    | 0.93        |
|--------|-------------|----------|-------------|
| S1—O1  | 1.4383 (7)  | C10—C11  | 1.3992 (12) |
| S1—N1  | 1.6329 (6)  | C10—H10  | 0.93        |
| S1—C8  | 1.7563 (8)  | C11—C12  | 1.3942 (13) |
| O3—C6  | 1.3343 (8)  | C11—C14  | 1.5031 (12) |
| O3—C5  | 1.4827 (9)  | C12—C13  | 1.3916 (12) |
| O4—C23 | 1.2226 (9)  | C12—H12  | 0.93        |
| N1—C1  | 1.4770 (9)  | С13—Н13  | 0.93        |
| N1—C4  | 1.4849 (9)  | C14—H14A | 0.96        |
| C1—C2  | 1.5325 (10) | C14—H14B | 0.96        |
| C1—H1A | 0.97        | C14—H14C | 0.96        |
| C1—H1B | 0.97        | C15—H15A | 0.96        |
| C2—C5  | 1.5328 (10) | C15—H15B | 0.96        |
|        |             |          |             |

| C2—C3      | 1.5462 (10) | C15—H15C      | 0.96        |
|------------|-------------|---------------|-------------|
| С2—Н2      | 0.98        | C16—H16A      | 0.96        |
| С3—С7      | 1.4923 (9)  | C16—H16B      | 0.96        |
| C3—C4      | 1.5332 (10) | C16—H16C      | 0.96        |
| С3—Н3      | 0.98        | C17—C18       | 1.3831 (10) |
| C4—H4A     | 0.97        | C17—C22       | 1.4012 (10) |
| C4—H4B     | 0.97        | C18—C19       | 1.4099 (11) |
| C5—C15     | 1.5202 (11) | C18—H18       | 0.93        |
| C5—C16     | 1.5217 (12) | C19—C20       | 1.3859 (12) |
| C6—C7      | 1.3581 (9)  | С19—Н19       | 0.93        |
| C6—C17     | 1.4779 (9)  | C20—C21       | 1.4057 (11) |
| C7—C23     | 1.4734 (10) | C20—H20       | 0.93        |
| C8—C13     | 1.3953 (11) | C21—C22       | 1.3770 (10) |
| C8—C9      | 1.3960 (11) | C21—H21       | 0.93        |
| C9—C10     | 1.3892 (11) | C22—C23       | 1.5063 (10) |
| O2—S1—O1   | 120.17 (4)  | C9—C10—C11    | 121.18 (8)  |
| O2—S1—N1   | 106.46 (4)  | С9—С10—Н10    | 119.4       |
| O1—S1—N1   | 105.76 (4)  | C11-C10-H10   | 119.4       |
| O2—S1—C8   | 109.35 (4)  | C12—C11—C10   | 118.97 (7)  |
| O1—S1—C8   | 107.78 (4)  | C12—C11—C14   | 120.94 (8)  |
| N1—S1—C8   | 106.52 (3)  | C10-C11-C14   | 120.09 (8)  |
| C6—O3—C5   | 114.81 (6)  | C13—C12—C11   | 120.66 (8)  |
| C1—N1—C4   | 111.34 (6)  | C13—C12—H12   | 119.7       |
| C1—N1—S1   | 118.53 (5)  | C11—C12—H12   | 119.7       |
| C4—N1—S1   | 119.42 (5)  | C12—C13—C8    | 119.49 (7)  |
| N1—C1—C2   | 103.05 (6)  | С12—С13—Н13   | 120.3       |
| N1—C1—H1A  | 111.2       | C8—C13—H13    | 120.3       |
| C2—C1—H1A  | 111.2       | C11—C14—H14A  | 109.5       |
| N1—C1—H1B  | 111.2       | C11—C14—H14B  | 109.5       |
| C2—C1—H1B  | 111.2       | H14A—C14—H14B | 109.5       |
| H1A—C1—H1B | 109.1       | C11—C14—H14C  | 109.5       |
| C1—C2—C5   | 114.46 (6)  | H14A—C14—H14C | 109.5       |
| C1—C2—C3   | 103.08 (5)  | H14B—C14—H14C | 109.5       |
| C5—C2—C3   | 113.88 (6)  | C5-C15-H15A   | 109.5       |
| С1—С2—Н2   | 108.4       | С5—С15—Н15В   | 109.5       |
| С5—С2—Н2   | 108.4       | H15A—C15—H15B | 109.5       |
| С3—С2—Н2   | 108.4       | C5—C15—H15C   | 109.5       |
| C7—C3—C4   | 113.62 (6)  | H15A—C15—H15C | 109.5       |
| C7—C3—C2   | 107.12 (5)  | H15B-C15-H15C | 109.5       |
| C4—C3—C2   | 103.12 (6)  | C5—C16—H16A   | 109.5       |
| С7—С3—Н3   | 110.9       | C5—C16—H16B   | 109.5       |
| С4—С3—Н3   | 110.9       | H16A—C16—H16B | 109.5       |
| С2—С3—Н3   | 110.9       | C5—C16—H16C   | 109.5       |
| N1—C4—C3   | 104.45 (6)  | H16A—C16—H16C | 109.5       |
| N1—C4—H4A  | 110.9       | H16B—C16—H16C | 109.5       |
| C3—C4—H4A  | 110.9       | C18—C17—C22   | 121.23 (6)  |
| N1—C4—H4B  | 110.9       | C18—C17—C6    | 132.27 (7)  |
| C3—C4—H4B  | 110.9       | C22—C17—C6    | 106.50 (6)  |
| H4A—C4—H4B | 108.9       | C17—C18—C19   | 117.81 (7)  |

| O3—C5—C15     | 104.14 (6)  | C17—C18—H18     | 121.1       |
|---------------|-------------|-----------------|-------------|
| O3—C5—C16     | 107.55 (6)  | C19—C18—H18     | 121.1       |
| C15—C5—C16    | 111.62 (7)  | C20-C19-C18     | 120.64 (7)  |
| O3—C5—C2      | 110.56 (5)  | С20—С19—Н19     | 119.7       |
| C15—C5—C2     | 112.44 (6)  | С18—С19—Н19     | 119.7       |
| C16—C5—C2     | 110.27 (6)  | C19—C20—C21     | 121.16 (7)  |
| O3—C6—C7      | 127.24 (6)  | С19—С20—Н20     | 119.4       |
| O3—C6—C17     | 120.89 (6)  | C21—C20—H20     | 119.4       |
| C7—C6—C17     | 111.87 (6)  | C22—C21—C20     | 117.92 (7)  |
| C6—C7—C23     | 107.48 (6)  | C22—C21—H21     | 121.0       |
| C6—C7—C3      | 123.28 (6)  | C20—C21—H21     | 121.0       |
| C23—C7—C3     | 129.24 (6)  | C21—C22—C17     | 121.20 (7)  |
| C13—C8—C9     | 120.73 (7)  | C21—C22—C23     | 130.91 (7)  |
| C13—C8—S1     | 119.21 (6)  | C17—C22—C23     | 107.89 (6)  |
| C9—C8—S1      | 119.85 (6)  | O4—C23—C7       | 127.46 (6)  |
| С10—С9—С8     | 118.95 (7)  | O4—C23—C22      | 126.32 (7)  |
| С10—С9—Н9     | 120.5       | C7—C23—C22      | 106.23 (6)  |
| С8—С9—Н9      | 120.5       |                 |             |
| O2—S1—N1—C1   | -177.15 (5) | O1—S1—C8—C13    | -23.07 (7)  |
| O1—S1—N1—C1   | 53.96 (6)   | N1—S1—C8—C13    | 90.05 (7)   |
| C8—S1—N1—C1   | -60.54 (6)  | O2—S1—C8—C9     | 29.79 (7)   |
| O2—S1—N1—C4   | -35.69 (6)  | O1—S1—C8—C9     | 162.01 (6)  |
| O1—S1—N1—C4   | -164.58 (5) | N1—S1—C8—C9     | -84.87 (7)  |
| C8—S1—N1—C4   | 80.92 (6)   | C13—C8—C9—C10   | -0.70 (12)  |
| C4—N1—C1—C2   | 18.78 (7)   | S1—C8—C9—C10    | 174.14 (6)  |
| S1—N1—C1—C2   | 163.14 (5)  | C8—C9—C10—C11   | -0.40 (12)  |
| N1—C1—C2—C5   | -159.04 (6) | C9—C10—C11—C12  | 1.24 (13)   |
| N1—C1—C2—C3   | -34.83 (6)  | C9—C10—C11—C14  | -178.93 (8) |
| C1—C2—C3—C7   | -81.83 (6)  | C10-C11-C12-C13 | -0.99 (13)  |
| C5—C2—C3—C7   | 42.77 (8)   | C14—C11—C12—C13 | 179.17 (8)  |
| C1—C2—C3—C4   | 38.33 (6)   | C11—C12—C13—C8  | -0.07 (13)  |
| C5—C2—C3—C4   | 162.92 (6)  | C9—C8—C13—C12   | 0.93 (12)   |
| C1—N1—C4—C3   | 5.19 (7)    | S1—C8—C13—C12   | -173.94 (6) |
| S1—N1—C4—C3   | -138.82 (5) | O3—C6—C17—C18   | -1.65 (12)  |
| C7—C3—C4—N1   | 88.79 (7)   | C7—C6—C17—C18   | 178.60 (8)  |
| C2—C3—C4—N1   | -26.79 (7)  | O3—C6—C17—C22   | 179.12 (6)  |
| C6—O3—C5—C15  | 160.01 (6)  | C7—C6—C17—C22   | -0.63 (8)   |
| C6—O3—C5—C16  | -81.43 (7)  | C22-C17-C18-C19 | -1.27 (11)  |
| C6—O3—C5—C2   | 39.02 (9)   | C6—C17—C18—C19  | 179.59 (8)  |
| C1—C2—C5—O3   | 61.71 (8)   | C17—C18—C19—C20 | -0.60 (12)  |
| C3—C2—C5—O3   | -56.54 (8)  | C18—C19—C20—C21 | 1.57 (13)   |
| C1—C2—C5—C15  | -54.22 (8)  | C19—C20—C21—C22 | -0.63 (13)  |
| C3—C2—C5—C15  | -172.46 (6) | C20—C21—C22—C17 | -1.25 (12)  |
| C1—C2—C5—C16  | -179.49 (6) | C20—C21—C22—C23 | 178.69 (8)  |
| C3—C2—C5—C16  | 62.27 (8)   | C18—C17—C22—C21 | 2.25 (11)   |
| C5—O3—C6—C7   | -12.17 (10) | C6—C17—C22—C21  | -178.42 (7) |
| C5—O3—C6—C17  | 168.12 (6)  | C18—C17—C22—C23 | -177.71 (7) |
| O3—C6—C7—C23  | 179.60 (7)  | C6—C17—C22—C23  | 1.63 (8)    |
| C17—C6—C7—C23 | -0.67 (8)   | C6—C7—C23—O4    | -177.94 (8) |

| O3-C6-C7-C3                                                                                                                                                     | -0.19 (11)                                  | C3-C7-C23-O4                        |                                                                | 1.83 (12)                                         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-------------------------------------|----------------------------------------------------------------|---------------------------------------------------|
| C17-C6-C7-C3                                                                                                                                                    | 179.54 (6)                                  | C6-C7-C23-C22                       |                                                                | 1.63 (8)                                          |
| C4-C3-C7-C6                                                                                                                                                     | -128.50 (7)                                 | C3-C7-C23-C22                       |                                                                | -178.61 (7)                                       |
| C2-C3-C7-C6                                                                                                                                                     | -15.31 (9)                                  | C21-C22-C23-O4                      |                                                                | -2.41 (13)                                        |
| C4-C3-C7-C23                                                                                                                                                    | 51.76 (10)                                  | C17-C22-C23-O4                      |                                                                | 177.54 (7)                                        |
| C2-C3-C7-C23                                                                                                                                                    | 164.96 (7)                                  | C21-C22-C23-C7                      |                                                                | 178.01 (8)                                        |
| O2-S1-C8-C13                                                                                                                                                    | -155.29 (6)                                 | C17-C22-C23-C7                      |                                                                | -2.03 (8)                                         |
| Hydrogen-bond geometry (Å, °)<br>D—H···A<br>C3—H3···O1 <sup>i</sup><br>C16—H16A···O3 <sup>ii</sup><br>C16—H16C···O1 <sup>i</sup><br>C21—H21···O4 <sup>iii</sup> | <i>D</i> —Н<br>0.98<br>0.96<br>0.96<br>0.93 | H…A<br>2.45<br>2.55<br>2.49<br>2.56 | D…A<br>3.2451 (10)<br>3.5075 (11)<br>3.4151 (11)<br>3.2266 (9) | <i>D</i> —H… <i>A</i><br>138<br>175<br>161<br>129 |

Symmetry codes: (i) *x*+1, *y*, *z*; (ii) -*x*+2, -*y*+2, -*z*; (iii) -*x*+2, -*y*+2, -*z*+1.



Fig. 2



Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# Seven papers on fused-ring heterocyclic ketones containing an *N*-tosylpyrrolo[3,4-c]pyrano moiety. Corrigenda

## K. Chinnakali,<sup>a</sup>\* M. Jayagobi<sup>b</sup> and Hoong-Kun Fun<sup>c</sup>\*

<sup>a</sup>Department of Physics, Anna University, Chennai 600 025, India, <sup>b</sup>Department of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India, and <sup>c</sup>X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia

Correspondence e-mail: kali@annauniv.edu, hkfun@usm.my

Received 26 November 2007; accepted 27 November 2007

Corrections are made to the name of an author in seven papers by Chinnakali *et al.* [*Acta Cryst.* (2007), E**63**, 04363, 04364, 04434–04435, 04436–04437, 04438, 04489–04490 and 04491–04492].

In the papers by Chinnakali, Jayagopi *et al.* (2007a,b) and Chinnakali, Sudha *et al.* (2007a,b,c,d,e), the name of the author M. Jayagopi is given incorrectly. The correct name should be M. Jayagobi, as given above.

#### References

- Chinnakali, K., Jayagopi, M., Sudha, D., Raghunathan, R. & Fun, H.-K. (2007a). Acta Cryst. E63, 04363.
- Chinnakali, K., Jayagopi, M., Sudha, D., Raghunathan, R. & Fun, H.-K. (2007b). Acta Cryst. E63, 04364.
- Chinnakali, K., Sudha, D., Jayagopi, M., Raghunathan, R. & Fun, H.-K. (2007a). Acta Cryst. E63, 04434–04435.
- Chinnakali, K., Sudha, D., Jayagopi, M., Raghunathan, R. & Fun, H.-K. (2007b). Acta Cryst. E63, 04436–04437.
- Chinnakali, K., Sudha, D., Jayagopi, M., Raghunathan, R. & Fun, H.-K. (2007c). Acta Cryst. E63, 04438.
- Chinnakali, K., Sudha, D., Jayagopi, M., Raghunathan, R. & Fun, H.-K. (2007d). Acta Cryst. E63, 04489–04490.
- Chinnakali, K., Sudha, D., Jayagopi, M., Raghunathan, R. & Fun, H.-K. (2007e). Acta Cryst. E63, 04491–04492.